Publications / 2010 - 2019


68. Carlson, E. S.; Balskus, E. P. The mysteries of macrocyclic colibactins. Nature Chemistry 2019, 11 (10), 867-869. DOI: 10.1038/s41557-019-0339-1.


67. Chen, S.; Henderson, A.; Petriello, M. C.; Romano, K. A.; Gearing, M.; Miao, J.; Schell, M.; Sandoval-Espinola, W. J.; Tao, J.; Sha, B.; Graham, M.; Crooke, R.; Kleinridders, A.; Balskus, E. P.; Rey, F. E.; Morris, A. J.; Biddinger, S. B. Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metabolism 2019, 30 (6), 1141-1151.e1145. DOI: https://doi.org/10.1016/j.cmet.2019.08.021 .


66. Volpe, M. R.; Wilson, M. R.; Brotherton, C. A.; Winter, E. S.; Johnson, S. E.; Balskus, E. P. In Vitro Characterization of the Colibactin-Activating Peptidase ClbP Enables Design of a Fluorogenic Activity Probe. ACS Chemical Biology 2019, 14 (9), 2095-2095. DOI: https://doi.org/10.1021/acschembio.9b00540. bioRxiv: https://www.biorxiv.org/content/10.1101/559385v1


65. Jiang, Y.; Stornetta, A.; Villalta, P. W.; Wilson, M. R.; Boudreau, P. D.; Zha, L.; Balbo, S.; Balskus, E. P. Reactivity of an Unusual Amidase May Explain Colibactin’s DNA Cross-Linking Activity. Journal of the American Chemical Society 2019, 141 (29), 11489-11496. DOI: https://doi.org/10.1021/jacs.9b02453. bioRxiv: https://doi.org/10.1101/567248.


64. McCallum, M. E.; Balskus, E. P. Enzymes that detoxify marine toxins. Nature 2019, 570 (7761), 315-316. DOI: 10.1038/d41586-019-01742-1


63. Maini Rekdal, V.; Bess, E. N.; Bisanz, J. E.; Turnbaugh, P. J.; Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019, 364 (6445), eaau6323. DOI: https://www.science.org/doi/10.1126/science.aau6323


62. Volpe, M. R.; Wilson, M. R.; Brotherton, C. A.; Winter, E. S.; Johnson, S. E.; Balskus, E. P. In Vitro Characterization of the Colibactin-Activating Peptidase ClbP Enables Design of a Fluorogenic Activity Probe. ACS Chemical Biology 2019, 14 (9), 2095-2095. DOI: https://pubs.acs.org/doi/10.1021/acschembio.9b00540


61. Wilson, M. R.; Jiang, Y.; Villalta, P. W.; Stornetta, A.; Boudreau, P. D.; Carrá, A.; Brennan, C. A.; Chun, E.; Ngo, L.; Samson, L. D.; Engelward, B. P.; Garrett, W. S.; Balbo, S.; Balskus, E. P. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019, 363 (6428), eaar7785. DOI: doi:10.1126/science.aar7785.


60. Ng, T. L.; Rohac, R.; Mitchell, A. J.; Boal, A. K.; Balskus, E. P. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin. Nature 2019, 566 (7742), 94-99. DOI: 10.1038/s41586-019-0894-z.


59. Schultz, E. E.; Braffman, N. R.; Luescher, M. U.; Hager, H. H.; Balskus, E. P. Biocatalytic Friedel–Crafts Alkylation Using a Promiscuous Biosynthetic Enzyme. Angewandte Chemie International Edition 2019, 58 (10), 3151-3155. DOI: https://doi.org/10.1002/anie.201814016.


58. Peck, S. C.; Denger, K.; Burrichter, A.; Irwin, S. M.; Balskus, E. P.; Schleheck, D. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium <i>Bilophila wadsworthia</i>. Proceedings of the National Academy of Sciences 2019, 116 (8), 3171-3176. DOI: doi:10.1073/pnas.1815661116.


57. Martins, T. P.; Rouger, C.; Glasser, N. R.; Freitas, S.; de Fraissinette, N. B.; Balskus, E. P.; Tasdemir, D.; Leao, P. N. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat Prod Rep 2019, 36 (10), 1437-1461. DOI: 10.1039/c8np00080h From NLM Medline.


56. Orman, M.; Bodea, S.; Funk, M. A.; Campo, A. M.-d.; Bollenbach, M.; Drennan, C. L.; Balskus, E. P. Structure-Guided Identification of a Small Molecule That Inhibits Anaerobic Choline Metabolism by Human Gut Bacteria. Journal of the American Chemical Society 2019, 141 (1), 33-37. DOI: https://pubs.acs.org/doi/10.1021/jacs.8b04883


 
(50) Nat Microbiol Chittim graphical abstract.png
 

55. Chittim, Carina L.; Martínez del Campo, Ana; Balskus, Emily P. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nature Microbiology 4 (2019), 155–163. https://doi.org/10.1038/s41564-018-0294-4.


 
(49) TOC.png
 

54. Rajakovich, Lauren J.; Balskus, Emily P. Metabolic functions of the human gut microbiota: the role of metalloenzymes. Natural Product Reports 36 (2018), 593–625. https://doi.org/10.1039/C8NP00074C.


 
(48) Nat Comm kinamycin graphical abstract.png
 

53. Wang, Kwo-Kwang A.; Ng, Tai L.; Wang, Peng; Huang, Zedu; Balskus, Emily P.; van der Donk, Wilfred A. Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin. Nature Communications 9 (2018), 3687. https://doi.org/10.1038/s41467-018-06083-7.


(47) 18-05-31 Figure 1 cropped.png

52. Levin, Benjamin J.; Balskus, Emily P. Discovering radical-dependent enzymes in the human gut microbiota. Current Opinion in Chemical Biology 47 (2018), 86–93. https://doi.org/10.1016/j.cbpa.2018.09.011.


51. Bodea, Simona; Balskus, Emily P. Purification and characterization of the choline trimethylamine-lyase (CutC)-activating protein CutD. Methods in Enzymology 606 (2018), 73–94.


 
 

50. Waldman, Abraham J.; Balskus, Emily P. Discovery of a diazo-forming enzyme in cremeomycin biosynthesis. The Journal of Organic Chemistry 83 (2018), 7539–7546. https://doi.org/10.1021/acs.joc.8b00367.


(48) eLife Cgr2 graphical abstract.png

49. Koppel, N.; Bisanz, J. E.; Pandelia, M.-E.; Turnbaugh, P. J.; Balskus, E. P. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 2018, 7, e33953. DOI: 10.7554/eLife.33953. https://doi.org/10.7554/eLife.33953.001.


 
 

48. Chittim, Carina; Irwin, Stephania M.; Balskus, Emily P. Deciphering human gut microbiota-nutrient interactions: a role for biochemistry. Biochemistry 57 (2018), 2567–2577. https://doi.org/10.1021/acs.biochem.7b01277.


 
 

47. Maini Rekdal, Vayu; Balskus, Emily P. Gut microbiota: rational manipulation of gut bacterial metalloenzymes provides insights into dysbiosis and inflammation. Biochemistry 57 (2018), 2291–2293. https://doi.org/10.1021/acs.biochem.8b00340.


 
 

46. Schneider, Benjamin A.; Balskus, Emily P. Discovery of small molecule protease inhibitors by investigating a widespread human gut bacterial biosynthetic pathway. Tetrahedron 74 (2018), 3215–3230. https://doi.org/10.1016/j.tet.2018.03.043.


 
 

45. Levin, Benjamin J.; Balskus, Emily P. Characterization of 1,2-propanediol dehydratases reveals distinct mechanisms for B12-dependent and glycyl radical enzymes. Biochemistry 57 (2018), 3222–3226. https://doi.org/10.1021/acs.biochem.8b00164.


44. Dorrestein, Pieter C.; Balskus, Emily P. Chemical signaling at the eukaryotic/prokaryotic interface. Chemical Society Reviews 47 (5) (2018), 1572–1573. Review. https://doi.org/10.1039/c8cs90021c


 
(40) Graphic for website.png
 

43. Huang, Y. Y.; Martínez-del Campo, A.; Balskus, E. P. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes 2018, 9 (5), 437-451. DOI: 10.1080/19490976.2018.1435244. https://doi.org/10.1080/19490976.2018.1435244.


42. Balskus, Emily P. The human microbiome. ACS Infectious Diseases 4 (2018), 1–2. https://doi.org/10.1021/acsinfecdis.7b00229


 
(39) TOC graphic.png
 

41. Waldman, Abraham J.; Balskus, Emily P. The human microbiota, infectious disease, and global health: challenges and opportunities. ACS Infectious Diseases 4 (2018), 14–26. https://doi.org/10.1021/acsinfecdis.7b00232.


 
(38) 17-10-24 TOC.png
 

40. Kenny, Douglas J.; Balskus, Emily P. Engineering chemical interactions in microbial communities. Chemical Society Reviews 47 (2018), 1705–1729. https://doi.org/10.1039/c7cs00664k.


 
 

39. Romano, Kymberleigh A.; Martínez-del Campo, Ana; Kasahara, Kazuyuki; Chittim, Carina L.; Vivas, Eugenio I.; Amador-Noguez, Daniel; Balskus, Emily P.; Rey, Federico E. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host & Microbe 22 (2017), 279–290. https://doi.org/10.1016/j.chom.2017.07.021.


 
 

38. Zha, Li; Jiang, Yindi; Henke, Matthew T.; Wilson, Matthew R.; Wang, Jennifer X.; Kelleher, Neil L.; Balskus, Emily P. Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Nature Chemical Biology 13 (2017), 1063–1065. https://doi.org/10.1038/nchembio.2448.


 
 

37. Nakamura, Hitomi; Schultz, Erica E.; Balskus, Emily P. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis. Nature Chemical Biology 13 (2017), 916–921. https://doi.org/10.1038/nchembio.2421.


 
 

36. Koppel, N.; Maini Rekdal, V.; Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356 (6335), eaag2770. DOI: 10.1126/science.aag2770. https://doi.org/10.1126/science.aag2770.


35. Wallace, Stephen; Balskus, Emily P. Interfacing biocompatible reactions with engineered Escherichia coli. Methods in Molecular Biology (2017), 409–421.


 
 

34. Wilson, Matthew R.; Zha, Li; Balskus, Emily P. Natural product discovery from the human microbiome. Journal of Biological Chemistry 292 (2017), 8546–8552. https://doi.org/10.1074/jbc.R116.762906.


 
 

33. Waldman, Abraham J.; Ng, Tai L.; Wang, Peng; Balskus, Emily P. Heteroatom–heteroatom bond formation in natural product biosynthesis. Chemical Reviews 117 (2017), 5784–5863. https://doi.org/10.1021/acs.chemrev.6b00621.


 
 

32. Wang, Peng; Hong, Gloria J.; Wilson, Matthew R.; Balskus, Emily P. Production of stealthin C involves an S–N-type Smiles rearrangement. Journal of the American Chemical Society 139 (2017), 2864–2867. https://doi.org/10.1021/jacs.6b10586.


31. Levin, Benjamin J.; Huang, Yolanda Y.; Peck, Spencer C.; Wei, Yifeng; Martinez-del Campo, Ana; Marks, Jonathan A.; Franzosa, Eric A.; Huttenhower, Curtis; Balskus, Emily P. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-L-proline. Science 355 (2017), aai8386. https://doi.org/10.1126/science.aai8386.


 
 

30. Bodea, Smaranda; Funk, Michael A.; Balskus, Emily P.; Drennan, Catherine L. Molecular basis of C–N bond cleavage by the glycyl radical enzyme choline trimethylamine-lyase. Cell Chemical Biology 23 (2016), 1206–1216. https://doi.org/10.1016/j.chembiol.2016.07.020.


29. Balskus, Emily P. Addressing infectious disease challenges by investigating microbiomes. ACS Infectious Diseases 2 (2016), 453–455. https://doi.org/10.1021/acsinfecdis.6b00100


 
 

28. Martinez-del Campo, Ana; Romano, Kymberleigh A.; Rey, Federico E.; Balskus, Emily P. The plot thickens: diet microbe interactions may modulate thrombosis risk. Cell Metabolism 23 (2016), 573–575. https://doi.org/10.1016/j.cmet.2016.03.017.


 
 

27. Wallace, Stephen; Balskus, Emily P. Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angewandte Chemie International Edition 55 (2016), 6023–6027. https://doi.org/10.1002/anie.201600966.


 
 

26. Zha, Li; Wilson, Matthew R.; Brotherton, Carolyn A.; Balskus, Emily P. Characterization of polyketide synthase machinery from the pks island facilitates isolation of a candidate precolibactin. ACS Chemical Biology 11 (2016), 1287–1295. https://doi.org/10.1021/acschembio.6b00014.


 
 

25. Koppel, N.; Balskus, E. P. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 2016, 23 (1), 18-30. DOI: 10.1016/j.chembiol.2015.12.008. https://doi.org/10.1016/j.chembiol.2015.12.008.


 
 

24. Unified Microbiome Initative Consortuim A unified initiative to harness Earth's microbiomes. Science 2015350, 507–508. doi:10.1126/science.aac8480


 
 

23. Balskus, Emily P. “Colibactin: Understanding an Elusive Gut Bacterial Genotoxin.” Natural Product Reports Highlight 2015, 32, 1534–1540. doi:10.1039/C5NP00091B


22. Medema, Marnix H. et al. Minimum Information about a Biosynthetic Gene Cluster. Nature Chemical Biology 201511, 625–631. doi:10.1038/nchembio.1890


 
(21) 15-1-26 TOC.png
 

21. Waldman, Abraham J.; Pechersky, Yakov; Wang, Peng; Wang, Jennifer X.; Balskus, Emily P. The cremeomycin biosynthetic gene cluster encodes a pathway for diazo formation. ChemBioChem 2015, 16, 2172–2175. https://doi.org/10.1002/cbic.201500407.


toc_graphic_v3_2.jpg

20. Leão, Pedro N.; Nakamura, Hitomi; Costa, Margarida; Pereira, Alban R.; Martins, Rosário; Vasconcelos, Vitor; Gerwick, William H.; Balskus, Emily P. Biosynthesis-assisted structural elucidation of the bartolosides, chlorinated aromatic glycolipids from cyanobacteria. Angewandte Chemie International Edition 2015, 54, 11063–11067. https://doi.org/10.1002/anie.201503186.


 
 

19. Brotherton, Carolyn A.; Balskus, Emily P. Shedding light on sunscreen biosynthesis in zebrafish. eLife 2015, 4, e07961. https://doi.org/10.7554/eLife.07961.


 
 

18. Wallace, Stephen; Balskus, Emily P. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angewandte Chemie International Edition 2015, 54, 7106–7109. https://doi.org/10.1002/anie.201502185.


 
 

17. Nakamura, Hitomi; Wang, Jennifer X.; Balskus, Emily P. Assembly line termination in cylindrocyclophane biosynthesis: Discovery of an editing type II thioesterase domain in a type I polyketide synthase. Chemical Science 2015, 6, 3816–3822. https://doi.org/10.1039/C4SC03132F.


 
 

16. Martinez-del Campo, Ana; Craciun, Smaranda; Hamer, Hilary A.; Haiser, Henry J.; Turnbaugh, Peter J.; Balskus, Emily P. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 2015, 6, e00042-15. https://doi.org/10.1128/mBio.00042-15.


 
org_lett-2015-1545.gif
 

15. Brotherton, Carolyn A.; Wilson, Matthew; Byrd, G.; Balskus, Emily P. Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity. Organic Letters 2015, 17, 1545–1548. https://doi.org/10.1021/acs.orglett.5b00432.


 
 

14. Wallace, Stephen; Schultz, Erica E.; Balskus, Emily P. "Using Non-Enzymatic Chemistry to Influence Microbial Metabolism." Current Opinion in Chemical Biology 201525, 71–79. doi:10.1016/j.cbpa.2014.12.024


 
 

13. Balskus, Emily P. Sponge Symbionts Play Defense. Nature Chemical Biology 201410, 611–612. News and viewsdoi:10.1038/nchembio.1588


 
 

12. Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism. Angewandte Chemie International Edition 2014, 53, 7785–7786. https://doi.org/10.1002/anie.201403148


 
 

11. Craciun, Smaranda; Marks, Jonathan A.; Balskus, Emily P. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chemical Biology 2014, 9, 1408–1413. https://doi.org/10.1021/cb500113p.


 
 

10. Wallace, Stephen; Balskus, Emily P. Opportunities for merging chemical and biological synthesis. Current Opinion in Biotechnology 2014, 30, 1–8. https://doi.org/10.1016/j.copbio.2014.03.006.


 
 

9. Janso, Jeffrey E.; Haltli, Brad A.; Eustáquio, Alessandra S.; Kulowski, Kerry; Waldman, Abraham J.; Zha, Li; Nakamura, Hitomi; Bernan, Valerie S.; He, Haiyin; Carter, Guy T.; Koehn, Frank E.; Balskus, Emily P. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica. Tetrahedron 2014, 70, 4156–4164. https://doi.org/10.1016/j.tet.2014.03.009.


 
 

8. Haiser, Henry J.; Seim, Kristen L.; Balskus, Emily P.; Turnbaugh, Peter J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 2014, 5, 233–238. https://doi.org/10.4161/gmic.27915.


 
 

7. Waldman, A.; Balskus, Emily P. Lomaiviticin biosynthesis employs a new strategy for starter unit generation. Organic Letters 2014, 16, 640–643. https://doi.org/10.1021/ol403714g.


 
 

6. Lee, Yunmi; Umeano, Afoma; Balskus, Emily P. Rescuing auxotrophic microorganisms with nonenzymatic chemistry. Angewandte Chemie International Edition 2013, 53, 11800–11803. https://doi.org/10.1002/anie.201307033. 


5. Haiser, Henry J.; Gootenberg, David B.; Chatman, Kelly; Sirasani, Gopal; Balskus, Emily P.; Turnbaugh, Peter J. Predicting and manipulating cardiac drug inactivation by the human gut microbe Eggerthella lenta. Science 341 (2013), 295–298. https://doi.org/10.1126/science.1235872


 
 

4. Nakamura, Hitomi; Balskus, Emily P. Using chemical knowledge to uncover new biological function: Discovery of the cylindrocyclophane biosynthetic pathway. Synlett 2013, 24, 1464–1470. https://doi.org/10.1055/s-0033-1338879.


 
 

3. Brotherton, Carolyn A.; Balskus, Emily P. A Prodrug Mechanism Is Involved in Colibactin Biosynthesis and Cytotoxicity. Journal of the American Chemical Society 2013, 135, 3359–3362. https://doi.org/10.1021/ja312154m


 
 

2. Craciun, Smaranda; Balskus, Emily P. Microbial Conversion of Choline to Trimethylamine Requires a Glycyl Radical Enzyme. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 21307–21312. https://doi.org/10.1073/pnas.1215689109


1. Nakamura, Hitomi; Hamer, Hilary A.; Sirasani, Gopal; Balskus, Emily P. Cylindrocyclophane Biosynthesis Involves Functionalization of an Unactivated Carbon Center. Journal of the American Chemical Society 2012, 134, 18518–18521. https://doi.org/10.1021/ja308318p